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COMMENT 
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41, West Germany 
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Abstract. Here we apply a small cell, real space renormalisation group technique to study 
the critical behaviour of the nearest-neighbour interacting Ising model on self-avoiding 
walk (SAW) chains. In the limit of vanishing interactions between nearest neighbours 
which are not connected by the walk itself, the treatment reproduces exactly the critical 
behaviour of the linear chain Ising model. When all the nearest-neighbour interactions 
are allowed, the treatment gives a vanishing Tc, with the small cells chosen, for the Ising 
model on SAWS on the square and triangular lattices. The study of the critical behaviour 
of such models indicates some interesting departures from that of the Ising model on linear 
chains. 

Recently we have proposed and studied the phase transition and critical properties of 
an Ising model with nearest-neighbour interactions on self-avoiding walk (SAW) chains, 
where the SAWS themselves are executed on any d-dimensional lattice (Chakrabarti 
and Bhattacharya 1983, Bhattacharya and Chakrabarti 1984a, b). One can apply such 
a lattice statistical model in the study of phase transitions in magnetic (linear) polymers, 
and also in connection with studies on the magnetism of disordered solids near the 
percolation threshold. Unlike spins on a linear chain, the spins on a SAW chain 
frequently have more than two nearest neighbours, which indicates a finite average 
transition temperature T,, even with short range interactions, for such Ising models 
on SAW chains. The critical behaviour of such a system is also interesting, as the system 
feels all the d-dimensional fluctuations with a particular kind of quenched randomness 
(with excluded volume effects). The finiteness of the transition temperature of such a 
quasilinear system is also indicated by the fact that the lower critical dimensionality 
of the Ising model, with short range interactions, is unity (see e.g. Boccara and Havlin 
1984) and that the fractal dimensionality D of such a system on SAWS is greater than 
one (and less than two for d < 4) (see e.g. Mandelbrot 1982). Also the critical behaviour 
of such a system should correspond to the fractal dimensionality D of the system, 
rather than to the Euclidean dimension d of the lattice on which SAWS are executed 
(cf Gefen et a1 1983). 

Employing the Bethe-Peierls approximation kTJJ = -2/ln( 1 -2/Zeff), where J is 
the nearest-neighbour exchange interaction and Zeff is the average number of nearest 
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neighbours for spins on a SAW, and using Z,, = 2 + ( Z  - 1)  - p, where Z is the lattice 
coordination number and p is the average connective constant for SAWS on the lattice 
(see e.g. McKenzie 1976), we found kT,/J < 1.06 and 1.65 for Ising models on SAWS 

on the square and triangular lattices respectively( Bhattacharya and Chakrabarti 1984a). 
Using, on the other hand, computer simulation results for the percolation thresholds 
( p , )  for site dilution on SAW chain lattices, and employing the semi-empirical formula 
(Bishop 1973) kT, = Zed( p ; ’  + 1)  tanh-’ pJ’, connecting pc’s with the Ising model 
Tc’s on the same lattices, we found kT,/ J > 0.5 1 and 0.78 for Ising models on SAWS 

on the square and triangular lattices respectively (Bhattacharya and Chakrabarti 1984a). 
Studying similar Ising models on quasilinear fractals, Gefen et a1 (1983) showed that 
the correlation length exponent vT for the Ising models on such fractals is given by 
vT = D-’ (=0.75 for such Ising models on SAWS on d = 2 lattices). Using and extrapolat- 
ing the computer simulation results for the shortest connecting path lengths in SAWS 

on both the square and triangular lattices, and integrating the spin correlations on 
them, we found the susceptibility exponent yT = 1.024 * 0.007 for such Ising models 
on SAWS on two-dimensional lattices (Bhattacharya and Chakrabarti 1984a). The 
critical dynamics of Heisenberg spins on SAW chains was studied using a scaling picture 
and applying a real space renormalisation group ( RSRG) technique (Bhattacharya and 
Chakrabarti 1984b), and the study indicated z = 2D/ yT for the value of the dynamical 
exponent z. 

Here, we apply a small cell RSRG technique to such Ising models on SAWS on the 
square and triangular lattices. In the limit of vanishing interactions between the nearest 
neighbours which are not connected by the walk itself, such a treatment gives, as one 
can easily check, the exact linear chain critical behaviour for the Ising model. (It may 
be mentioned that the application of the replica trick and momentum space renormalisa- 
tion group technique does not reproduce this result in this trivial limit (Chakrabarti 
and Bhattacharya 1983).) When all the nearest-neighbour interactions are allowed, our 
treatment gives vanishing Tc’s. Also the study of critical behaviour indicates an 
interesting change from that of the Ising model on linear chains. 

Let us choose the cells shown in figures 1 ( a )  and 1 ( b )  for the square and triangular 
lattices respectively. The recursion relations for the renormalised fugacities f’ may 
then be written as (cf Stanley et al 1982, Shapiro 1978) 

y = j 2 + 2 f 3 + y ,  

f = 2f2 + 2f3, 

for SAWS on the square and triangular lattices respectively. If now the Ising exchange 
interactions J are allowed only along the walk, then, with t = tanh( J /  k T ) ,  the renor- 
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Figure I.  Original and renormalised cells are shown for ( a )  the square lattice (scale factor 
b = 2) and ( b )  the triangular lattice ( b  = 6). 



Real space renonnalisation group study of Ising model 1039 

malised interactions t’ are trivially given by 

for the Ising models on SAWS on the square and triangular lattices respectively. If the 
interactions are allowed between any occupied nearest neighbours, the renormalised 
interactions are then given by (cf Yeomans and Stinchcombe 1980) 

2( t 2 +  t3) 
t T  = 2 t ’f’ + 2 ( + 3 + ?.)f 3 9 

for the Ising models on SAWS on the square and triangular lattices respectively. 
The non-trivial fixed points (f” and t * )  and the exponents (given by (df/df)(p,,*) = 

b””s*w and (dt’/dt)(p,,*l = b ’ - ” S A W ” T ,  where b = 2 and h for the cells used in figures 
1 ( a )  and 1 ( b )  respectively) are given in table 1, where these values are also compared 
with other exact results and best estimates. In the case of nearest-neighbour Ising 
interactions, the critical behaviour, however, shows, with both the cells used, interesting 
crossover to a new critical behaviour, different from that of the linear chain. 

Table 1. Non-trivial fixed points and exponents for the recursion relations (l)-(6). 

SAWS on 

System 

Square lattice Triangular lattice 

f !* YSAW vr f t *  YSAW v r  

Nearest-neighbour Equations 0.47 1 0.72 1 0.37 1 0.67 1 
interactions along ( 1 )  and ( 3 )  
the walk only (2) and (4) 
(effectively I D  

problem) Best 0.38‘a’ I 0.75‘b’ 1 0.24‘” 1 0.75‘b’ 1 
estimates 
and exact 
results 

All nearest- Equations 0.47 1 0.72 1.14 0.37 1 0.67 2.16 
neighbour (1) and ( 5 )  
interactions (2) and (6) 
allowed 

Best 0.38‘a’ 0.74 0.75‘b’ - 0.24‘=’ 0.54 0.75‘b’ - 
estimates to to 

0.96“’ 0.85‘” 

McKenzie (1976). 
‘b) Nienhuis (1982). 
(‘) Bhattacharya and Chakrabarti (1984a). 
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